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were calculated by Sugawara3 and were small, —0.5% 
of the amplitude. The inner region of the nucleon 
structure has not been completely neglected, because 
the classical currents of the whole nucleon have been 
phenomenologically included in the classical term of 
the amplitude. 

The two-meson exchange interaction currents were 
not calculated for several reasons. They are too difficult, 
and the calculation would be incomplete until more is 
known about the meson-meson interaction. The 
calculation of a similar matrix element,5 the magnetic 
moment of the deuteron, using this same model, gave 
the result that the two-meson exchange effects were 
small. This is encouraging to the hope that they would 
not be important in our case. 

This calculation gives an account of that part of the 
interaction effect due to the f-f scattering state. The 
result is about one third of that predicted by Austern 
and Rost,1 about one-half of that suggested by Partovi,14 

and about twice that calculated by Sugawara.3 The 
excited Heitler-London state gives the dominant effect, 

14 F. Partovi, Ann. Phys. (N. Y.) 17; 79 (1964). 

I. INTRODUCTION 

TWO qualitative features of high-energy scattering 
have been known for some time: (i) At a given 

energy the total cross section and the width of the dif
fraction peak may not assume arbitrary values. The 
larger the total cross section the greater is the minimum 
number of partial waves required to build it up, which 
means a larger "radius" of the scattering object and 
consequently a narrower diffraction peak. An expression 
of such a relationship in the form of an inequality was 
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the principal uncertainty of this contribution is in the 
source function, the strength with which the excited 
state is produced. Even in the one-meson exchange 
approximation this is large only for small internucleon 
separations, it is quite possible that other short-range 
interactions could increase the source function. In such 
a way the result could perhaps be doubled, with a 
consequent deepening of the potential. 

The general conclusion is that the single-meson 
excited Heitler-London state is important in T— 1 
states. This is particularly seen in the calculated 
potential, but not so much in the capture amplitude. 
While the present calculation does not seem to give a 
sufficiently large interaction effect, it does not rule out 
the possibility that with more information on the inner 
structure of nucleons an effect twice as great could be 
found. 
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given in a previous paper.1,2 (ii) For a given total cross 
section the width of the diffraction peak increases as 
one increases the total elastic cross section.1,2 

A rough estimate of the width A of the diffraction 
peak is indeed easily obtained from: 

2TT f° dt 2TT A A o-tot2 

*. i .=- / l /MI 2—«-l/feo) | 2—^ , (l) 

J-4*' 2k2 s 2k2 4 4TT 

which gives 

- « ( — ) . (2) 
A 4 4TT Wei./ 

In Sec. II , we give a precise meaning to such a rela-
1 A. Martin, Phys. Rev. 129, 1432 (1963). 
2 E. Leader, Phys. Letters 5, 75 (1963). 
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From unitarity alone a lower bound for the derivative of the absorptive part of the forward scattering 
amplitude with respect to the momentum transfer is obtained, in terms of the elastic and total cross sections. 
Comparison with high-energy scattering experiments shows that the actual value of this derivative is rather 
close to the lower bound, which provides some information on the partial-wave distribution. Our result can 
also be used to obtain consistency requirements on theoretical models. If Regge behavior is assumed for 
high-energy scattering, namely, F(s,t)^f(t)saV\ then one can show that either a! (0) ^ e>0 or a (t)= const. 
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tionship by calculating a lower bound for the derivative 
of the scattering amplitude in the forward direction. 
We have found the following inequality: 

i lratot °tot 1 1 
— ]nA(s,t)>-\ 
it 9L47ro-eL k2J 

(3) 

In Sees. I I and I I I we have applied this result in 
connection with high-energy scattering experiments and 
theoretical predictions. 

II. DERIVATION OF INEQUALITY 

Let us consider the absorptive part of the scattering 
amplitude: 

el/2 

A(s,t) = — E (2 /+ l ) a i (* )P , | 
k V 2*V 

(4) 

where ai(s) is the imaginary part of the partial-wave 
amplitude fi(s), k is the momentum in the center-of-
mass system, s is the square of the energy, and — t is 
the square of the momentum transfer. The requirement 
of unitarity imposes the following restriction on the 
partial-wave amplitudes ai(s): 

0<ai(s)<l. (5) 

The total cross section is given by 

( r t o t - (47rA 2 ) i : (2Z+l )^(^) (6) 

and the total elastic cross section is given by 

a e l .= ( 4 x / F ) E ( 2 ^ + l ) | / J W | 2 , (7) 

which evidently satisfies the inequality 

*el.><Tel. im.= ( V * 2 ) E ( 2 / + l ) ^ ( j ) 2 . (8) 

The derivative of A (s,t) in the forward direction is 

d 1 s1'2 1(1+1) 
- i l ( V ) l « = £ ( 2 J + 1 ) ai(s). (9) 
it 2k2 k 2 

Now one can obtain in a straightforward calculation an 
extremum of (9) when <7tot and aGi, im. are held fix. 
Using the method of Lagrange multipliers we readily 
get that (9) is an extremum when ai(s) is of the form 

ai(s)=a-0l(l+l) (10) 

whenever (5) is satisfied. We have, thus, to consider 
two cases: 

(a) a > l ( ( 7 e l . i m . > f o t o t ) 

Then an extremum of (9) is obtained for: 

0zO) = l , KLo, 

*i(j) = « - # ( / + 1 ) , L0<l<Lu (11) 

ai(s) = 0, l>Li, 

where Lo is the smallest integer for which [_a—Pl(l-\-l)~] 
< 1 and L\ is the largest integer for which [a—j3Z(/+l)] 
> 0 . As a first approximation in our calculations we 
replace sums by integrals3 and readily obtain 

d 1 o-totT 
— ln4(V)U-o> 1 + 3 
it 8 47rL 

/ O-el. i m . \ 2 l 

v ) I* (12) 

which is in agreement with the result of Ref. 1 to order 
0(l/k2). Now one can verify that this case corresponds 
to small inelasticity. Actually one obtains that whenever 
Q J > 1 , (Jei. im.>fo"tot. Since in the high-energy region 
(10—30 BeV) all elementary particle scattering cross 
sections turn out to be such that o-ei. im.<fo"tot we shall 
not proceed to give a more accurate bound than (12), 
for this case. 

(b) a < l ( < 7 e l . i m . < | c r t o t ) 

This case corresponds to higher inelasticity. The partial 
wave distribution leading to a minimum is given by: 

al(s)=a-m+^) KLi 
ai(s)0 1>LX. 

(13) 

The condition ai(s)<l is automatically satisfied and 
the only restriction imposed by unitarity is #*($)> 0. 
The exact result for the minimum is 

it 
• \nA (s,t) | t-o 

> 
l fVtot 0 t o t + (<7tot2+ 127rO"el. ira./k2)112 3 Lj-0'to 

)L47r 2o-ei. 2k2. 
(14) 

The right-hand side is positive for (o,t0t/47r)(<rtot/o"ei.) 
> 1/k2. Actually one can verify that the expression in 
brackets is only slightly larger than C(ctot/47r)(o-t0t/o'e.i) 
—1/&2] over the entire range of energies for which this 
expression is positive. We shall henceforth use the 
simpler and more convenient inequality. 

i 

it 

1/^tot 0"tot 1 \ 
l n 4 ( V ) | w > - ( ) . (15) 

9 \ 4 T T (Tel. im. ft2/ 

One can make use of this inequality in two ways: (i) by 
direct comparison with experiment; (ii) to check the 
internal consistency of theoretical models. 

III. COMPARISON WITH EXPERIMENT 

In order to confront (15) with experimental results 
we first remark that since crei,>o"ei. im. that inequality 
holds even more so if one replaces o-ei. im. by <rei. on 
the right-hand side. Then the right-hand side may 
be experimentally determined. The left-hand side is 
not directly accessible to experimental determination. 

3 It turns out that the relative error committed in doing so is 
of the order c/k2 and becomes negligible in the high-energy region. 
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However let us assume that in the forward direction 
the product Ref(s,t) (d/dt) Ref(s,t) is negligible as 
compared with lmf(s,t) (d/dt) Imf(s,t) and in addition 
that at high energies the interaction becomes spin-
independent. Then the left-hand side will be approxi
mately equal to % (d/dt) ln(dcr/dti) which is a measurable 
quantity. Now using the results of Foley and others4 

for small angle scattering and the interpolation curves 
they propose, one finds that in the whole range of 
energies above 7 BeV the ratio 

Id /da\ /lfo-tot/ctotX 1 "I 
^ - - I n f - ) / - — ( — ) (16) 

2dt Vfi2// 9 L 4 7 r W / k2J 

is remarkably close to one. For pp, ^p, K^p scattering 
this ratio lies in the range 1.4-1.5 while for pp scattering 
one gets Rc^.1.1. This value comes about because in pp 
scattering the best fit for the momentum transfer dis
tribution of the form exp(a+bt-\-ct2) was obtained for 
c=0, that is with a pure exponential. 

Now the closer the ratio to the value one, the 
stronger the restriction on the partial-wave distribution 
which must approach the parabolic distribution given 
by (13). To show how sensitive this ratio is to the 
partial-wave distribution we give a few examples: for 
a rectangular distribution (ai= const, for 1<L, ai—0 
for 1>L) R—2.25; for an exponential ai=const. 
exp(—at) one obtains JR=1.68 and for a Gaussian 
ai= const. exp£—cJ(/+l)] one finds R=l.l. The first 
example would be in disagreement with the experi
mental value for all processes and the second one would 
be inconsistent with the data for pp scattering. One 
must emphasize, however, that such an analysis can 
only give the general behavior of the I dependence of 
the partial waves. One cannot for instance rule out an 
exponential tail in pp scattering, as required by ana-
lyticity. However, one expects that this tail does not 
give any sizeable contribution for the scattering ampli
tude. These considerations are of course valid only in 
so far as the two assumptions made, namely, the small-
ness of Re/(.?,0) (d/dt) Ref(s,t) \ t=o and spin inde
pendence hold true. Foley4 and others have checked 
the smallness of Ref(sfi) with respect to Im/(^,0) and 
spin independence by extrapolating the elastic differen
tial cross section to zero momentum transfer and 
comparing with the optical limit. 

d<re\. 

dtt 
>. 

/ 0 t o t \ 2 

\ 4 T T / 
(17) 

The equality is verified only if the amplitude is purely 
absorptive and spin-independent. They have found that 
the equality is at least very nearly satisfied in pp and 
pp scattering. On the other hand, the experimental 

4 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. 
Russell, and C. C. L. Yuan, Phys. Rev. Letters 11, 425 (1963); 
11, 503 (1963). 

determination of the derivative of the real part with 
respect to t is very difficult although not impossible in 
principle. One could, thus, also take the view that the 
value of R close to one would indicate a large value for 
(d/dt) Ref(s,t) | i==0 with sign opposite to that of Ref(s,0). 

IV. A THEORETICAL CONSEQUENCE 

We shall now consider a theoretical implication of 
inequality (12). If the high-energy scattering amplitude 
has the Regge behavior: 

A(s9t)c^p(tXs/so)ai (0 (18) 

where a(t) is analytic in the neighborhood of the physi
cal region, then either a(t) is a constant or a'(0) > e>0. 
An elegant proof of this assertion was independently 
given by Sugawara5 and Yamamoto.6,7 We want to 
show that this result also follows as a natural conse
quence of inequality (12). 

First we notice that if A (s,t) is asymptotically given 
by (18) and if the contribution of large momentum 
transfer (t< — T) to the elastic imaginary cross section 
can be neglected,8 then the ratio <7ei. im./^tot)2 ap
proaches zero as s—>oo,9 provided that a(t) is not a 
constant. Indeed, under these hypotheses, one can 
write: 

O'el. 

CTtot2 

i f° n3(/)i2/*\2["(<)~ 
167T2i_rU(0)J \sj 

*<°»<ft 
(19) 

Since a (t) is analytic in the neighborhood of the physical 
region and by unitarity a(t) <a(0) then the right-hand 
side of (19) vanishes at s going to infinity. Now taking 
(18) into (14) one obtains 

£'(Q) 

0(0) 

l r°"tot / CTtot 1 Y l 
+a'(0) l n * H — ( J . (20) 

9L4flrWim. * v J 

Hence if a(t) is not a constant the right-hand side of 
(20) tends to infinity which implies that 

a ' (0)>e>0. 

However, if a(t) is constant, both sides of (20) remain 
finite and there would be no violation of the inequality 
implied by unitarity in the S channel. 
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